发布于

微积分笔记

作者

极限和连续性

何为极限?

假设对于函数 ff 有:

limxcf(x)=L\displaystyle \lim _{x\to c} f(x)=L

即:只要 xx 无限接近于 cc, 则 f(x)f(x) 必然无限接近于 LL

εδ\varepsilon -\delta 语言来描述就是:

ε>0, δ>0, s.t. 0<xc<δf(x)L<ε\displaystyle \forall \varepsilon >0,\ \exists \delta >0,\ s.t.\ 0<|x−c|< \delta \Longrightarrow |f(x)-L|< \varepsilon

说白了就是:无论给定任何一个数字 ε(ε>0)\varepsilon (\varepsilon >0),总能找到一个数 δ(δ>0)\delta ( \delta >0)。使当 xxccδ\delta 范围内时,f(x)f(x) 在极限 LLε\varepsilon 范围内。


例:已知 f(x)={2xx5xx=5f( x) =\begin{cases} 2x & x\neq 5\\ x & x=5 \end{cases}, 证明 limx5f(x)=10\displaystyle \lim _{x\rightarrow 5} f( x) =10

根据定义,给定任意 ε(ε>0)\varepsilon (\varepsilon >0),有 δ(δ>0)\delta ( \delta >0)。因此,我们本质上是要找到一个 δ=function of ε\delta =function\ of\ \varepsilon 的函数。

Proof.\mathnormal{Proof.}

x5<δ2x10<ε2x10<2δ2δ=εδ=ε22x10<εε>0, δ>0, s.t. x5<δ2x10<ε Q.E.D.\begin{aligned} & |x-5| < \delta \Longrightarrow |2x-10|< \varepsilon \\ & |2x-10| < 2\delta \\ & 2\delta =\varepsilon \Rightarrow \delta =\frac{\varepsilon }{2}\\ & |2x-10| < \varepsilon \\ & \forall \varepsilon >0,\ \exists \delta >0 ,\ s.t.\ |x-5|< \delta \Longrightarrow |2x-10|< \varepsilon \ \quad Q.E.D. \end{aligned}

夹逼定理

II 为包含某点 cc 的区间,f,g,hf, g, h 为定义在 II 上的函数。若对于所有属于 II 而不等于 ccxx,有:

  • g(x)f(x)h(x)g( x) \leqslant f( x) \leqslant h( x)
  • limxcg(x)=limxch(x)=L\displaystyle \lim _{x\rightarrow c} g( x) =\lim _{x\rightarrow c} h( x) =L

则,limxcf(x)=L\displaystyle \lim _{x\rightarrow c} f( x) =L

g(x)g(x)h(x)h(x) 分别被称为 f(x)f(x) 的下界和上界。

Proof: limθ0sinθθ=1\displaystyle \lim _{\theta \rightarrow 0}\frac{\sin \theta }{\theta } =1

1

Proof: limθ01cosθθ=0\displaystyle \lim _{\theta \rightarrow 0}\frac{1-\cos \theta }{\theta } =0

Proof.\mathnormal{Proof.}

limθ01cosθθ=limθ0(1cosθ)(1+cosθ)θ(1+cosθ)=limθ0sin2θθ(1+cosθ)=limθ0sinθθlimθ0sinθ1+cosθ=10=0Q.E.D.\begin{aligned} \lim _{\theta \rightarrow 0}\frac{1-\cos \theta }{\theta } & =\lim _{\theta \rightarrow 0}\frac{( 1-\cos \theta )( 1+\cos \theta )}{\theta ( 1+\cos \theta )}\\ & =\lim _{\theta \rightarrow 0}\frac{\sin^{2} \theta }{\theta ( 1+\cos \theta )}\\ & =\lim _{\theta \rightarrow 0}\frac{\sin \theta }{\theta } \cdot \lim _{\theta \rightarrow 0}\frac{\sin \theta }{1+\cos \theta }\\ & =1\cdot 0\\ & =0 & Q.E.D. \end{aligned}

连续性的定义

函数在某一点处连续:f is continuous at x=climxcf(x)=f(c)\displaystyle f\ is\ continuous\ at\ x=c\Longleftrightarrow \lim _{x\rightarrow c} f( x) =f( c)

函数在开区间连续:f is continuous over (a, b)f is continuous over every point in the intervalf\ is\ continuous\ over\ ( a,\ b) \Longleftrightarrow f\ is\ continuous\ over\ every\ point\ in\ the\ interval

函数在闭区间连续:f is continuous over [a, b]f is continuous over (a, b) and limxa+f(x)=f(a), limxbf(x)=f(b)\displaystyle f\ is\ continuous\ over\ [ a,\ b] \Longleftrightarrow f\ is\ continuous\ over\ ( a,\ b) \ and\ \lim _{x\rightarrow a^{+}} f( x) =f( a) ,\ \lim _{x\rightarrow b^{-}} f( x) =f( b)

中值定理

Suppose f is a continuous function at every point of the interval [a, b]Suppose\ f\ is\ a\ continuous\ function\ at\ every\ point\ of\ the\ interval\ [ a,\ b]

  • f will take on every value between f(a) and f(b) over the intervalf\ will\ take\ on\ every\ value\ between\ f( a) \ and\ f( b) \ over\ the\ interval
  • For any L between the values f(a) and f(b), there exists a number c in [a, b] for which f(c)=LFor\ any\ L\ between\ the\ values\ f( a) \ and\ f( b) ,\ there\ exists\ a\ number\ c\ in\ [ a,\ b] \ for\ which\ f( c) =L

怎么会有这么简单的定理…

导数

导数的符号表示

Lagrange's notation: ff^{\prime }

Leibniz's notation: dydx\frac{dy}{dx}

Newton's notation: y˙\dot{y}

导数的两种定义形式

f(x)=limh0f(x+h)f(x)h\displaystyle f^{\prime }( x) =\lim _{h\rightarrow 0}\frac{f( x+h) -f( x)}{h}

f(c)=limxcf(x)f(c)xc\displaystyle f^{\prime }( c) =\lim _{x\rightarrow c}\frac{f( x) -f( c)}{x-c}

可微性

f is differentiability at x=cf is continuous at x=cf is not continuous at x=cf is not differentiability at x=cf\ is\ differentiability\ at\ x=c\Longrightarrow f\ is\ continuous\ at\ x=c \\ f\ is\ not\ continuous\ at\ x=c\Longrightarrow f\ is\ not\ differentiability\ at\ x=c

不可微的三种情况:{1. not continuous2. vertical tanget3. sharp turn\begin{cases} 1.\ not\ continuous\\ 2.\ vertical\ tanget\\ 3.\ sharp\ turn \end{cases}

Proof: Differentiability implies continuity

Proof.\mathnormal{Proof.}

Assume: f differentiability at x=cAssume:\ f\ differentiability\ at\ x=c

f differentiability at x=cf(c)=limxcf(x)f(c)xc\begin{array}{l} \because f\ differentiability\ at\ x=c\\ \therefore f^{\prime }( c) =\displaystyle \lim _{x\rightarrow c}\frac{f( x) -f( c)}{x-c} \end{array}

limxc[f(x)f(c)]=limxc(xc)f(x)f(c)xc=limxc(xc)limxcf(x)f(c)xc=0f(c)=0limxc[f(x)f(c)]=0limxcf(x)limxcf(c)=0limxcf(x)f(c)=0limxcf(x)=f(c)Q.E.D.\begin{aligned} \lim _{x\rightarrow c}[ f( x) -f( c)] & =\lim _{x\rightarrow c}( x-c) \cdot \frac{f( x) -f( c)}{x-c}\\ & =\lim _{x\rightarrow c}( x-c) \cdot \lim _{x\rightarrow c}\frac{f( x) -f( c)}{x-c}\\ & =0\cdot f^{\prime }( c)\\ & =0\\ & \\ \lim _{x\rightarrow c}[ f( x) -f( c)] & =0\\ \lim _{x\rightarrow c} f( x) -\lim _{x\rightarrow c} f( c) & =0\\ \lim _{x\rightarrow c} f( x) -f( c) & =0\\ \lim _{x\rightarrow c} f( x) & =f( c) & Q.E.D. \end{aligned}

Justifying the power rule

Proof: ddx(xn)=nxn1\frac{d}{dx}\left( x^{n}\right) =nx^{n-1}

Proof.\mathnormal{Proof.}

ddx(xn)=limΔx0(x+Δx)nxnΔx\displaystyle \frac{d}{dx}\left( x^{n}\right) =\lim _{\Delta x\rightarrow 0}\frac{( x+\Delta x)^{n} -x^{n}}{\Delta x}

According to Binomial theorem:According\ to\ Binomial\ theorem:

limΔx0(x+Δx)nxnΔx=limΔx0xn+(n1)xn1Δx+(n2)xn2Δx2+...+(nn)x0ΔxnxnΔx=limΔx0(n1)xn1+(n2)xn2Δx+...+(nn)Δxn1=limΔx0(n1)xn1=limΔx0n!1!(n1)!xn1=limΔx0nxn1Q.E.D.\begin{aligned} \displaystyle \lim _{\Delta x\rightarrow 0}\frac{( x+\Delta x)^{n} -x^{n}}{\Delta x} & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\cancel{x^{n}} +\binom{n}{1} x^{n-1} \Delta x+\binom{n}{2} x^{n-2} \Delta x^{2} +...+\binom{n}{n} x^{0} \Delta x^{n}\cancel{-x^{n}}}{\Delta x}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\binom{n}{1} x^{n-1} +\cancel{\binom{n}{2} x^{n-2} \Delta x} +...+\cancel{\binom{n}{n} \Delta x^{n-1}}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\binom{n}{1} x^{n-1}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{n!}{\cancel{1!}( n-1) !} x^{n-1}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0} nx^{n-1} & Q.E.D. \end{aligned}

Proof: ddx(x)=12x12\frac{d}{dx}\left(\sqrt{x}\right) =\frac{1}{2} x^{-\frac{1}{2}}

Proof.\mathnormal{Proof.}

ddx(x)=limΔx0x+ΔxxΔx=limΔx0(x+Δxx)(x+Δx+x)Δx(x+Δx+x)=limΔx01x+Δx+x=limΔx012x=limΔx012x12Q.E.D.\begin{aligned} \frac{d}{dx}\left(\sqrt{x}\right) & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\sqrt{x+\Delta x} -\sqrt{x}}{\Delta x}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\left(\sqrt{x+\Delta x} -\sqrt{x}\right)\left(\sqrt{x+\Delta x} +\sqrt{x}\right)}{\Delta x\left(\sqrt{x+\Delta x} +\sqrt{x}\right)}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{1}{\sqrt{x+\Delta x} +\sqrt{x}}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{1}{2\sqrt{x}}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{1}{2} x^{-\frac{1}{2}} & Q.E.D. \end{aligned}

Justifying the basic derivative rules

Proof: Constant rule (ddxk=0\frac{d}{dx} k=0)

Proof.\mathnormal{Proof.}

k is constanty does not change as x changesf(x+h)f(x)=0ddxk=limh0f(x+h)f(x)h=limh00h=0\begin{array}{l} \because k\ is\ constant\\ \therefore y\ does\ not\ change\ as\ x\ changes\\ \therefore f( x+h) -f( x) =0\\ \therefore \frac{d}{dx} k=\displaystyle \lim _{h\rightarrow 0}\frac{f( x+h) -f( x)}{h} =\lim _{h\rightarrow 0}\frac{0}{h} =0 \end{array}

Proof: Constant multiple and sum/difference rules

Constant multiple rule: ddx[kf(x)]=kddxf(x)\dfrac{d}{dx}[k\cdot f(x)]=k\cdot\dfrac{d}{dx}f(x)

Sum rule: ddx[f(x)+g(x)]=ddxf(x)+ddxg(x)\dfrac{d}{dx}[f(x)+g(x)]=\dfrac{d}{dx}f(x)+\dfrac{d}{dx}g(x)

Difference rule: ddx[f(x)g(x)]=ddxf(x)ddxg(x)\dfrac{d}{dx}[f(x)-g(x)]=\dfrac{d}{dx}f(x)-\dfrac{d}{dx}g(x)

Proof.\mathnormal{Proof.}

1. f(x)=kg(x)f(x)=kg(x)1.\ f( x) =kg( x) \Longrightarrow f^{\prime }( x) =kg^{\prime }( x)

f(x)=limh0f(x+h)f(x)h=limh0kg(x+h)kg(x)h=limh0k(g(x+h)g(x)h)=klimh0g(x+h)g(x)h=kg(x)Q.E.D.\begin{aligned} f^{\prime }( x) & =\displaystyle \lim _{h\rightarrow 0}\frac{f( x+h) -f( x)}{h}\\ & =\displaystyle \lim _{h\rightarrow 0}\frac{kg( x+h) -kg( x)}{h}\\ & =\displaystyle \lim _{h\rightarrow 0} k\left(\frac{g( x+h) -g( x)}{h}\right)\\ & =k\displaystyle \lim _{h\rightarrow 0}\frac{g( x+h) -g( x)}{h}\\ & =kg^{\prime }( x) & Q.E.D. \end{aligned}

2. f(x)=g(x)±j(x)f(x)=g(x)±j(x)2.\ f( x) =g( x) \pm j( x) \Longrightarrow f^{\prime }( x) =g^{\prime }( x) \pm j^{\prime }( x)

f(x)=limh0g(x+h)±j(x+h)(g(x)±j(x))h=limh0(g(x+h)g(x)h±j(x+h)j(x)h)=limh0g(x+h)g(x)h±limh0j(x+h)j(x)h=g(x)±j(x)Q.E.D.\begin{aligned} f^{\prime }( x) & =\displaystyle \lim _{h\rightarrow 0}\frac{g( x+h) \pm j( x+h) -( g( x) \pm j( x))}{h}\\ & =\displaystyle \lim _{h\rightarrow 0}\left(\frac{g( x+h) -g( x)}{h} \pm \frac{j( x+h) -j( x)}{h}\right)\\ & =\displaystyle \lim _{h\rightarrow 0}\frac{g( x+h) -g( x)}{h} \pm \lim _{h\rightarrow 0}\frac{j( x+h) -j( x)}{h}\\ & =g^{\prime }( x) \pm j^{\prime }( x) & Q.E.D. \end{aligned}

Proof: The derivatives of sin(x) and cos(x)

Known limx0sinxx=1\displaystyle \lim _{x\rightarrow 0}\frac{\sin x}{x} =1 and limx01cosxx=0\displaystyle \lim _{x\rightarrow 0}\frac{1-\cos x}{x} =0

Proof.\mathnormal{Proof.}

1. ddx[sinx]=cosx1.\ \frac{d}{dx}[\sin x] =\cos x

ddx[sinx]=limΔx0sin(x+Δx)sin(x)Δx=limΔx0cosxsinΔx+sinxcosΔxsinxΔx=limΔx0(cosxsinΔxΔx+sinxcosΔxsinxΔx)=limΔx0cosx(sinΔxΔx)+limΔx0sinx(cosΔx1)Δx=cosxlimΔx0sinΔxΔxsinxlimΔx01cosΔxΔx=cosx1sinx0=cosxQ.E.D.\begin{aligned} \frac{d}{dx}[\sin x] & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\sin( x+\Delta x) -\sin( x)}{\Delta x}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\cos x\sin \Delta x+\sin x\cos \Delta x-\sin x}{\Delta x}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\left(\frac{\cos x\sin \Delta x}{\Delta x} +\frac{\sin x\cos \Delta x-\sin x}{\Delta x}\right)\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\cos x\left(\frac{\sin \Delta x}{\Delta x}\right) +\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\sin x(\cos \Delta x-1)}{\Delta x}\\ & =\cos x\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\sin \Delta x}{\Delta x} -\sin x\displaystyle \lim _{\Delta x\rightarrow 0}\frac{1-\cos \Delta x}{\Delta x}\\ & =\cos x\cdot 1-\sin x\cdot 0\\ & =\cos x & Q.E.D. \end{aligned}

2. ddx[cosx]=sinx2.\ \frac{d}{dx}[\cos x] =-\sin x

1

Proof: The derivative of exe^{x} is exe^{x}

Know the limit definition of e\mathbb{e} is e=limn(1+1n)n=limn0(1+n)1ne=\displaystyle \lim _{n\rightarrow \infty }\left( 1+\frac{1}{n}\right)^{n} =\displaystyle \lim _{n\rightarrow 0}( 1+n)^{\frac{1}{n}}

Proof.\mathnormal{Proof.}

ddx(ex)=limΔx0ex+ΔxexΔx=exlimΔx0eΔx1Δx\begin{aligned} \frac{d}{dx}\left( e^{x}\right) & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{e^{x+\Delta x} -e^{x}}{\Delta x}\\ & =e^{x}\displaystyle \lim _{\Delta x\rightarrow 0}\frac{e^{\Delta x} -1}{\Delta x} \end{aligned}

Let n=eΔx1, we can get n+1=eΔx, such that Δx=ln(n+1) and as Δx0=n0Let\ n=e^{\Delta x} -1,\ we\ can\ get\ n+1=e^{\Delta x} ,\ such\ that\ \Delta x=\ln( n+1) \ and\ as\ \Delta x\rightarrow 0=n\rightarrow 0

We can rewrite to:We\ can\ rewrite\ to:

ddx(ex)=exlimn0nln(n+1)=exlimn01nn1nln(n+1)=exlimn01ln[(1+n)1n]=ex1ln[limn0(1+n)1n]=exQ.E.D.\begin{aligned} \frac{d}{dx}\left( e^{x}\right) & =e^{x}\displaystyle \lim _{n\rightarrow 0}\frac{n}{\ln( n+1)}\\ & =e^{x}\displaystyle \lim _{n\rightarrow 0}\frac{\frac{1}{n} n}{\frac{1}{n}\ln( n+1)}\\ & =e^{x}\displaystyle \lim _{n\rightarrow 0}\frac{1}{\ln\left[( 1+n)^{\frac{1}{n}}\right]}\\ & =e^{x}\frac{1}{\ln\left[\displaystyle \lim _{n\rightarrow 0}( 1+n)^{\frac{1}{n}}\right]}\\ & =e^{x} & Q.E.D. \end{aligned}

Proof: The derivative of ln(x)\ln( x) is 1x\frac{1}{x}

Method 1 (Directly from the definition of the derivative as a limit)

Proof.\mathnormal{Proof.}

ddx(lnx)=limΔx0ln(x+Δx)ln(x)Δx=limΔx0ln(x+Δxx)Δx=limΔx0ln(1+Δxx)Δx=limΔx01Δxln(1+Δxx)=limΔx0ln[(1+Δxx)1Δx]\begin{aligned} \frac{d}{dx}(\ln x) & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\ln( x+\Delta x) -\ln( x)}{\Delta x}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\ln\left(\frac{x+\Delta x}{x}\right)}{\Delta x}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\ln\left( 1+\frac{\Delta x}{x}\right)}{\Delta x}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{1}{\Delta x}\ln\left( 1+\frac{\Delta x}{x}\right)\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\ln\left[\left( 1+\frac{\Delta x}{x}\right)^{\frac{1}{\Delta x}}\right] \end{aligned}

Let n=Δxx, Δx=nx, 1Δx=1n1x and as Δx0=n0Let\ n=\frac{\Delta x}{x} ,\ \Delta x=nx,\ \frac{1}{\Delta x} =\frac{1}{n} \cdot \frac{1}{x} \ and\ as\ \Delta x\rightarrow 0=n\rightarrow 0

We can rewrite to:We\ can\ rewrite\ to:

limΔx0ln[(1+Δxx)1Δx]=1xlimn0ln[(1+n)1n]=1xln[limn0(1+n)1n]=1xQ.E.D.\begin{aligned} \displaystyle \lim _{\Delta x\rightarrow 0}\ln\left[\left( 1+\frac{\Delta x}{x}\right)^{\frac{1}{\Delta x}}\right] & =\frac{1}{x}\displaystyle \lim _{n\rightarrow 0}\ln\left[( 1+n)^{\frac{1}{n}}\right]\\ & =\frac{1}{x}\ln\left[\displaystyle \lim _{n\rightarrow 0}( 1+n)^{\frac{1}{n}}\right]\\ & =\frac{1}{x} & Q.E.D. \end{aligned}

Method 2 (Using the fact that ddx(ex)=ex\frac{d}{dx}\left( e^{x}\right) =e^{x} and applying implicit differentiation)

Proof.\mathnormal{Proof.}

Known ddx(ex)=exKnown\ \frac{d}{dx}\left( e^{x}\right) =e^{x}

Let y=ln(x), we can get:Let\ y=\ln( x) ,\ we\ can\ get:

ddx(ey)=ddx(x)eydydx=1dydx=1ey=1elnx=1xQ.E.D.\begin{aligned} \frac{d}{dx}\left( e^{y}\right) & =\frac{d}{dx}( x)\\ e^{y} \cdot \frac{dy}{dx} & =1\\ \frac{dy}{dx} & =\frac{1}{e^{y}}\\ & =\frac{1}{e^{\ln x}}\\ & =\frac{1}{x} & Q.E.D. \end{aligned}

Proof: The product rule

Proof.\mathnormal{Proof.}

ddx[f(x)g(x)]=limh0f(x+h)g(x+h)f(x+h)g(x)+f(x+h)g(x)f(x)g(x)h=limh0[f(x+h)g(x+h)g(x)h+g(x)f(x+h)f(x)h]=[limh0f(x+h)][limh0g(x+h)g(x)h]+[limh0g(x)][limh0f(x+h)f(x)h]=f(x)g(x)+g(x)f(x)Q.E.D.\begin{aligned} \frac{d}{dx}[ f( x) g( x)] & =\displaystyle \lim _{h\rightarrow 0}\frac{f( x+h) g( x+h) -f( x+h) g( x) +f( x+h) g( x) -f( x) g( x)}{h}\\ & =\displaystyle \lim _{h\rightarrow 0}\left[ f( x+h)\frac{g( x+h) -g( x)}{h} +g( x)\frac{f( x+h) -f( x)}{h}\right]\\ & =\left[\displaystyle \lim _{h\rightarrow 0} f( x+h)\right]\left[\displaystyle \lim _{h\rightarrow 0}\frac{g( x+h) -g( x)}{h}\right] +\left[\displaystyle \lim _{h\rightarrow 0} g( x)\right]\left[\displaystyle \lim _{h\rightarrow 0}\frac{f( x+h) -f( x)}{h}\right]\\ & =f( x) g^{\prime }( x) +g( x) f^{\prime }( x) & Q.E.D. \end{aligned}

Proof: The derivatives of tan(x)\tan( x)cos(x)\cos( x)sec(x)\sec( x) and csc(x)\csc( x)

Proof.\mathnormal{Proof.}

ddx(tanx)=ddx(sinxcosx)ddx(cotx)=ddx(cosxsinx)=cos2x+sin2xcos2x=(sin2x+cos2x)sin2x=1cos2x=1sin2x=sec2x=csc2xddx(secx)=ddx(1cosx)ddx(cscx)=ddx(1sinx)=0cosx+1sinxcos2x=0sinx1cosxsin2x=sinxcos2x=cosxsin2x=tanxsecx=cotxcscxQ.E.D.\begin{aligned} \frac{d}{dx}(\tan x) & =\frac{d}{dx}\left(\frac{\sin x}{\cos x}\right) & \frac{d}{dx}(\cot x) & =\frac{d}{dx}\left(\frac{\cos x}{\sin x}\right)\\ & =\frac{\cos^{2} x+\sin^{2} x}{\cos^{2} x} & & =\frac{-\left(\sin^{2} x+\cos^{2} x\right)}{\sin^{2} x}\\ & =\frac{1}{\cos^{2} x} & & =-\frac{1}{\sin^{2} x}\\ & =\sec^{2} x & & =-\csc^{2} x\\ \frac{d}{dx}(\sec x) & =\frac{d}{dx}\left(\frac{1}{\cos x}\right) & \frac{d}{dx}(\csc x) & =\frac{d}{dx}\left(\frac{1}{\sin x}\right)\\ & =\frac{0\cdot \cos x+1\cdot \sin x}{\cos^{2} x} & & =\frac{0\cdot \sin x-1\cdot \cos x}{\sin^{2} x}\\ & =\frac{\sin x}{\cos^{2} x} & & =-\frac{\cos x}{\sin^{2} x}\\ & =\tan x\cdot \sec x & & =-\cot x\cdot \csc x & Q.E.D. \end{aligned}

Proof: The derivatives of axa^{x} (For any positive base a)

Proof.\mathnormal{Proof.}

Known ddx(ex)=exKnown\ \frac{d}{dx}\left( e^{x}\right) =e^{x}

Let a=elnaLet\ a=e^{\ln a}

ddx(ax)=ddx[(elna)x]=ddx[e(lna)x]=e(lna)xlna=axlnaQ.E.D.\begin{aligned} \frac{d}{dx}\left( a^{x}\right) & =\frac{d}{dx}\left[\left( e^{\ln a}\right)^{x}\right]\\ & =\frac{d}{dx}\left[ e^{(\ln a) x}\right]\\ & =e^{(\ln a) x} \cdot \ln a\\ & =a^{x} \cdot \ln a & Q.E.D. \end{aligned}

Proof: The derivatives of logax\log_{a} x (For any positive base a1a\neq 1)

Proof.\mathnormal{Proof.}

Known ddx(lnx)=1xKnown\ \frac{d}{dx}(\ln x) =\frac{1}{x}

ddx(logax)=ddx(1lnalnx)=1xlnaQ.E.D.\begin{aligned} \frac{d}{dx}(\log_{a} x) & =\frac{d}{dx}\left(\frac{1}{\ln a} \cdot \ln x\right)\\ & =\frac{1}{x\ln a} & Q.E.D. \end{aligned}

Proof: Chain Rule and Quotient Rule

Chain Rule Proof.\mathnormal{Chain\ Rule\ Proof.}

Known: 1. If a function is differentiable, then it is also continuous.2. If function u is continuous at x, then Δu0 as Δx0\begin{aligned} Known:\ & 1.\ If\ a\ function\ is\ differentiable,\ then\ it\ is\ also\ continuous.\\ & 2.\ If\ function\ u\ is\ continuous\ at\ x,\ then\ \Delta u\rightarrow 0\ as\ \Delta x\rightarrow 0 \end{aligned}

For why if function u is continuous at x, then Δu0 as Δx0For\ why\ if\ function\ u\ is\ continuous\ at\ x,\ then\ \Delta u\rightarrow 0\ as\ \Delta x\rightarrow 0:

1

The chain rule tell us: ddx[y(u(x))]=dydx=dydududxThe\ chain\ rule\ tell\ us:\ \frac{d}{dx}[ y( u( x))] =\frac{dy}{dx} =\frac{dy}{du} \cdot \frac{du}{dx}

Assuming y, u differentiable at x. We can get:Assuming\ y,\ u\ differentiable\ at\ x.\ We\ can\ get:

dydx=limΔx0ΔyΔx=limΔx0ΔyΔuΔuΔx=(limΔx0ΔyΔu)(limΔx0ΔuΔx)=(limΔu0ΔyΔu)(limΔx0ΔuΔx)=dydududxQ.E.D.\begin{aligned} \frac{dy}{dx} & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}\\ & =\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x}\\ & =\left(\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta u}\right)\left(\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\Delta u}{\Delta x}\right)\\ & =\left(\displaystyle \lim _{\Delta u\rightarrow 0}\frac{\Delta y}{\Delta u}\right)\left(\displaystyle \lim _{\Delta x\rightarrow 0}\frac{\Delta u}{\Delta x}\right)\\ & =\frac{dy}{du} \cdot \frac{du}{dx} & Q.E.D. \end{aligned}

Quotient Rule Proof.\mathnormal{Quotient\ Rule\ Proof.}

ddx[f(x)g(x)]=ddx[f(x)[g(x)]1]=f(x)[g(x)]1f(x)[g(x)]2g(x)=f(x)g(x)f(x)g(x)[g(x)]2=f(x)g(x)f(x)g(x)[g(x)]2Q.E.D.\begin{aligned} \frac{d}{dx}\left[\frac{f( x)}{g( x)}\right] & =\frac{d}{dx}\left[ f( x) \cdot [ g( x)]^{-1}\right]\\ & =f^{\prime }( x)[ g( x)]^{-1} -f( x)[ g( x)]^{-2} g^{\prime }( x)\\ & =\frac{f^{\prime }( x)}{g( x)} -\frac{f( x) g^{\prime }( x)}{[ g( x)]^{2}}\\ & =\frac{f^{\prime }( x) g( x) -f( x) g^{\prime }( x)}{[ g( x)]^{2}} & Q.E.D. \end{aligned}